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Mathematical induction 

The mathematical induction (in Latin: inductio matematica, inductio plena) is 

a method of mathematical proof (and, in spite of its name, it is a deductive 

reasoning). The proof realized with the mathematical induction is called an 

inductive proof.  

Typically the mathematical induction is used to establish a claimed statement, 

T(n), for every natural number n (bigger than a certain one, n0; in many cases 

this initial value is 0 or 1), and we here outline its idea in this case only. It is 

done in two steps.  

The first step (called a base case, inceptum inductionis) is the check that the 

statement T(n) holds true for the initial value n = n0.  

The second step (known as an inductive step, gradus inductionis) is to follow 

the schema: we assume T(n) is true  

and we conclude the truth of the statement T(n+1).  

Usually it is spoken as follows:  

we do an inductive assumption , or inductive hypothesis, 

 and we derive the inductive thesis.  

The inductive proofs are based on the principle of mathematical induction, i.e., 

on the following schema: 

{ }{ } )(T)1(T)(T&)(T
000 nmmn nnnm ≥> ∀⇒+⇒∀  

(and commonly, instead of m it is used n). 

The first inductive proofs, although not in the perfect form, were presented, 

implicitly, by Plato in his philosophical dialogues Parmenides (around 370 BC) 

and by Euclid in his Στοιχεῖα (Elements, c.300 BC), who used it to show that 

there are infinitely many prime numbers. Elements of the mathematical 

induction appeared in India, where Jayadeva (c.1000 AD) and Bhaskara 

II (c.1150) worked out ćarkwala (cyclic algorithm) to solve indetermined 

quadratic equation 
1 )

. The mathematical induction was also independently 

discovered by a Persian mathematician and engineer al-Karaji, in his lost work 

(written c.1000 AD) he used it when writing on the binomial theorem and Pascal 

triangle (both these notions are presented later on). The first explicit formulation 

of the mathematical induction was given by Blaise Pascal in his Traité du 

                                                 
1
) More precisely, in 628 Brahmagupta found integer solutions, i.e., pairs (x, y) of 

integer numbers, of the equation of the form x
2
 = N y

2
 +1 for some values of integer 

N. His approach was generalized by Jayadeva and Bhaskara II and it provided 

solutions for arbitrary integer N. Their result was unknown in Europe, where this 

equation with N = 61 was solved in 1658 by William Brouncker, and a general 

method was discovered by J.L.Lagrange in 1766; nota bene, Lagrange technique is 

more laborious that ćarkwala.  
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triangle arithmétique (published in 1665). The term ‘mathematical induction’ 

and a modern rigorous treatment of its principle was provided by Augustus de 

Morgan in his Penny Cyclopedia article Induction of 1838. This principle was 

investigated in detail by George Boole (in An investigation of the laws of 

thought, on which are founded the mathematical theories of logic and 

probabilities, 1835) and by such researches in foundations of mathematics as 

Gottlob Frege, Giuseppe Peano and Richard Dedekind. 

Beside the already mentioned proof on the infinite number of primes the most 

known inductive proofs are that on 

− the sum of consecutive natural numbers, 

− the number of permutations, 

and we below present them (and some other ones, too). Let’s start with the first 

of them. 
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Triangular numbers 

Maybe the most popularized proof by the mathematical induction is that 

showing that the sum of n consecutive natural numbers starting at 1 is equal to 

n
 . 
(n+1)/2; for example,  

for n = 4:  1 + 2 + 3 + 4 = 10 = 2
 . 
5 = 4/2

 . 
(4+1) = 4

 . 
(4+1)/2, 

for n = 100: 1 + 2 + 3 + … + 100 = 5500 = 100
 . 
(100+1)/2. 

The first of above sums, valued 10 and called a tetraktys, was particularly 

admired by Pythagoreans. They acted in the 6th century BC (then so-called 

golden age of Greek mathematics started) and they knew that, for every 

concrete n, instead of evaluating the sum 1 + 2 + 3 +  … + n one can produce the 

correct result by one addition, one division by 2 and one multiplication.  

In the mathematical notation 
2)

 the claim on the considered sum can be written 

down in any of following forms:   

1°: if ak = k, then for every natural n there holds ∑
=

n

k
ka

1

 = 
2

)1( +⋅ nn
, 

2°: ∀ n ∈ N  ∑
=

n

k

k
1

 = 
2

)1( +⋅ nn
, 

3°:  T(n), where T(n) denotes the statement: ∀ n ∈ N  ∑
=

n

k

k
1

 = 
2

)1( +⋅ nn
. 

Below let’s present the (inductive) proof of the above, that is the proof that  

∀ n ∈ N  Ln = Pn ,  

where Ln := ∑
=

n

k

k
1

, Pn := 
2

)1( +⋅ nn
. 

The base case is nothing else than the check that the thesis holds true for n = 1. 

Since L1 = ∑
=

1

1k

k  = 1 and P1 = 
2

)11(1 +⋅
 = 1, so L1 = P1.  

The base case completed, we go to do the inductive step. We assume that there 

holds true the equality Ln = Pn for some n (this is the inductive assumption) and 

we will show that Ln+1 = Pn+1 (this is the inductive thesis).  

                                                 
2 )

  It is used the summation symbol (capital Greek letter Σ, read as ‘the sum’),  

∑
=

n

mk
ka  := am + am+1 + am+2 + …  an,   

k is called a summation index, it runs from the initial value m and it increases by 1 

till the final value n; by definition, if m < n, then the sum equals 0, 

ak is called a k-th addend, or a k-th component, of the sum at hand; 

the summation is said to be realized wrt k 
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We will show it by transforming the left side, Ln+1, of the thesis to be proven. 

Step by step there is  

  Ln+1 = ∑
+

=

1

1

n

k

k  = )1(
1

++∑
=

nk
n

k

 = 

       = Ln + (n+1) = 

       = Pn + (n+1) =  

      = )1(
2

)1(
++

+⋅
n

nn
 = 







 +⋅+ 1
2

)1(
n

n  = 
2

)2()1( +⋅+ nn
 = Pn+1, 

where consecutive equality signs are because of  

1) the definition of what Ln stands for,  

2) the decomposition of the sum into the sum of two components,  

3) the meaning of the symbol Ln,  

4) the inductive assumption,  

5) the use of the denotation Pn,  

6) the pulling out the common factor (n+1) in front of the parentheses,  

7) the writing out both factor on the same solidus,  

8) the recognizing that the previous expression is Pn with the index 

increased by 1. 

The above proves that the implication  

{ Ln = Pn } ⇒ { Ln+1 = Pn+1 } 

holds true. This way the inductive step is completed, and – in virtue of the 

principle of mathematical induction – it proves that ∀ n ∈ N  Ln = Pn Q.E.D. 
3)

. 

It is not difficult to notice that 1, 3, 6, 10, 15 and 21 circles can be arranged in 

the triangle of height 1, 2, 3, 4, 5 and 6, respectively (see figure).   

We ask how many circles are needed to arrange them into the triangle of height 

n (this triangle is made of n layers, and k-th layer is composed of k triangles, 

when layers are counted from the top as the 1st, the 2nd, the 3rd, the 4th a.s.o.). 

Let’s call this triangle as the n-th triangle and let’s denote the number of circles 

completing the n-th triangle by Tn.  

 

                                                 
3)

 Q.E.D. (quod erat demonstrandum) means ‘that which was to be demonstrated’ and  

marks the end of the mathematical proof or philosophical argument. This is Latin 

analogous to Greek O.E.∆. (ὅπερ ἔδει δεῖξαι) used, a.o., by Euclid and Archimedes.  

In some texts it is replaced by W
5
 (which was what was wanted), in recent decades 

it is common to mark the end of the proof by the solid black square ■ (the symbol 

phoned as a mathematical tombstone, introduced by Paul Halmos and implemented 

in TeX by Donald Knuth). 
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An immediate observation that a (n+1)-th triangle is formed when to the n-th 

triangle there is joined the next layer and it contains n+1 circles, is 

mathematically memorized as the recursion 
4)

   

Tn+1 = Tn + (n+1) for n = 1, 2, 3, … 

and with T1 = 1 (because 1 circle is a 1-st triangle). 

It is very easy to see that, for arbitrary natural n ≥ 2 there is  

   Tn = Tn–1 + n = Tn–2 + (n–1) + n = Tn–3 + (n–2)  + (n–1) + n = … = 

          T1 + 2 + … + (n–2)  + (n–1) + n = 1 + 2 + …  + (n–2)  + (n–1) + n = ∑
=

n

k

k
1

, 

so, by the formula proven above,  

Tn = 
2

)1( +⋅ nn
. 

                                                 
4)

 Here it is enough to say that a recursion wrt the quantity Qn is the algebraic relation 

involving quantity Qn and at least one Qm with the index m < n. The distance 

between the most distant indexes is called the order of the recursion, so the formula 

Tn+1 = Tn + (n+1) is the recursion of the 1st order, and the equation Fn+1 = Fn + Fn–1 

is the recursion, or the recurrence, or the recursive equation, of order 2 (this is 

known as Fibonacci recurrence). As far as we know, first recursive formulas 

appeared in India in works of Panini (6th century BC) and Aryabhata (5th century 

BC). 
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Handshake problem 

(m–1)-th triangular number solves the handshake problem which is defined as 

follows: how many handshakes, Hm, are made between m persons if every one of 

them shakes hands once with each other. Really, H2 = 1 = T1 (and, although it is 

not necessary, one can direct examine that there are H3 = 3 = T2 handshakes 

between 3 persons, H4 = 6 = T3 handshakes between 4 persons a.s.o.). Assuming 

that m persons do Hm handshakes, we see that with the arrival of the (m+1)-st 

person the number of handshakes rise up by m. It validates the recursive 

equation  

Hm+1 = Hm + m for m = 1, 2, 3, … 

with H1 = 0 (no handshake if there is only one person). 

Therefore  

   Hm = Hm–1 + m–1 = Hm–2 + (m–2) + m–1 = H1 + 1 + 3 + … + (m–2)  + m–1 = 

         = 1 + 2 + 3 + …  + (m–2)  + m–1 = ∑
−

=

1

1

m

k

k  = Tm–1 = 
2

)1( −⋅ mm
. 

A similar question to that forming the handshake problem concerns the number 

of diagonals, Dn, in a convex n-gon (and it does not restrict the generality to 

consider a regular n-gon). Obviously, in a triangle there is no diagonal, so D3 = 0, 

in the square there are D4 = 2 diagonals, in the pentagon there are D5 = 5 

diagonals, in a hexagon there are D6 = 9 diagonals. The general formula is  

Dn = 
2

)3( −⋅ nn
. 

It’s easy to produce it when noticing that the problem is identical as that of 

handshakes:  

a) n persons sitting at a table form n-gon, 

b) there are Hn handshakes the persons do, so there are Hn linear segments 

between all n vertices of a n-gon, 

c) between all segments starting at a vertex no.v there are two segments 

which are sides of considered n-gon, 

d) Dn = Hn – n. 

Notice that the formula Dn = n
 . 
(n–3)/2 can be obtained without referring to Hn; 

indeed, from very vertex of n-gon there goes out n–3 diagonals, so the total 

number of diagonals is n
 . 
(n–3)/2, and the division by 2 corresponds to the fact 

that in the presented approach every diagonal is taken into account twice (as it 

joins two vertices). 
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Binomial theorem and binomial coefficients 
 

The formula  

(a + b)
2
 = a

2
 + 2ab + b

2
, 

for the square of the sum of two scalars, a and b, is known (let’s say) from 

ever 
5)

. It is easy to produce analogous formulas for (a + b)
n
 with n = 3, 4 etc., 

e.g. 

(a + b)
3
 = (a + b)

2 . 
(a + b) = a

3
 + 3a

2
b + 3ab

2
 b

3
,
 

(a + b)
4
 = (a + b)

3 . 
(a + b) = a

4
 + 4a

3
b + 6a

2
b

2
 + 4ab

3
 + b

4
, 

(a + b)
5
 = … = a

5
 + 5a

4
b + 10a

3
b

2
 + 10a

2
b

3
  + 5ab

4
 + b

5
. 

Let’s denote the coefficient in the term a
k
b

n–k
 by Cn,k (at this moment let’s say 

that we use the letter C as coefficient; later on we will see that it stands rather 

because of an other relation) it means that there is  

(a + b)
n
 = ∑

=

−⋅
n

k

knk
kn baC

0
, . 

This equality is stating what is known as a binomial theorem, made famous  via 

Traité du triangle arithmétique (1665) written by Blaise Pascal, and the number 

Cn,k is called a (n, k)-binomial coefficient (and it is English adaptation of Latin 

binomium coefficent) 
6)

.  

                                                 
5
 
)
  Its geometrical proof is to draw the square with its side of length a+b and to divide it by 

two lines (to obtain two squares, of area a2 and b2, and two rectangles, each of area ab 
   

      a 

a 

              

          

 

 

 

 

 

 

 

a 

 

 

 

                          b 

 

 

           b 

 
6)

 The binomial theorem is given, for several values of the exponent n, in Euclid’s Elements 

(c. 300 BC). It, as well and its extension to higher exponents, is discussed in Chandaḥśāstra. 

This 8 chapter work was authored in India around 200 BC by Pingala. The commentary to 

Pingala’s work, made by Halayudha in 10th century CE, gives a graphical presentation of 

Pingala recurrence (it is named as Meru prastara and is equivalent to the Pascal triangle). 

About 1150 a clear exposition of binomial coefficients was given by Bhaskaracharya in his 

book Lilavati. Independently of Halayudha similar results gave his contemporary Persian 

mathematician al-Karaji. Later binomial coefficients appeared in papers by Omar Khayyam 

(11th century), in Apianus’, Stiefel’s, Tartaglia’s, Cardano’s and Viéte’s papers (16th 

century). Leibniz in his Dissertatio de arte combinatoria (1666) derived what is here named 

Pingall’s recurrence.  
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Immediately from this definition it follows that  

a) Cn,0 = Cn,n = 1 for arbitrary n ∈ N0, 

b) Cn,k = Cn,n–k = 1 for every k ∈ {0, 1, 2, …, n}  

c) 1
0

, =∑
=

n

k
knC ,  

and by mathematical induction it can be stated that  

d) Cn,k = 








k

n   

– this is contemporary denotation of the equality stated by Blaise 

Pascal, it involves so-called combinatorial symbol and we will 

familiarize it later on, when discussing combinations.   

Binomial coefficients Cn,k can be arranged in a table (see Table 1) where every 

line corresponds to the value of the first index n and each column corresponds to 

the value of the second index k.  

 
Table 1. First binomial coefficients 

        

Cn,k k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 … 

n = 0  1        

n = 1 1 1       

n = 2 1 2 1      

n = 3 1 3 3 1     

n = 4 1 4 6 4 1    

n = 5 1 5 10 10 5 1   

n = 6 1 6 15 20 15 6 1  

… … … … … … … …  

  

In the table of numbers Cn,k one can find such regularities as:  

a) the column no.1 contains consecutive natural numbers, 

b) the column no.2 contains consecutive triangular numbers, 

c) a number staying in line no. n and column no. k equals the sum of two 

numbers staying in preceding line: that located directly above and its left 

neighbor.  

A mathematical notation of the last above property is  

Cn,k = Cn–1,k–1 + Cn–1,k 

for n = 2, 3, 4, … and k = 1, 2, 3, …, n–1.  

This is the recursion (but of other type than recursion for triangular numbers or 

Fibonacci recurrence; the recurrence at hand is spread over two indexes, n and k, 
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and therefore it is qualified as a double recursion) and it is referred to as 

a Pingala recurrence, or a Pingala recursion 
7)

.   

 

 
Table 2. Pascal triangle 

     

           0  1  2  3  

n=0:          1         

n=1:         1  1        

n=2:        1  2  1       

n=3:       1  3  3  1      

n=4:      1  4  6  4  1     

n=5:     1  5  10  10  5  1    

n=6:    1  6  15  20  15  6  1   

n=7:   1  7  21  35  35  21  7  1  

n=8:  1  8  28  46  70  46  28  8  1 

… …  …  …  …  …  …  …  …  …  

 

 

The Pingala recurrence is very well noticed when binomial coefficients are 

arranged to form the triangle (see Fig.2): n-th level of this triangle lists the 

binomial coefficients with the first index equal to n,  

Cn,0, Cn,1, Cn,2, …, Cn,n, 

and for every fixed index k the numbers  

Cj,k, Cj+1,k, Cj+2,k, Cj+3,k, … 

are written along k-th line which is parallel to the left side of this triangle (this 

left side itself is 0-th line). This configuration of binomial coefficients is 

commonly referred to as a Pascal triangle 
8).  

 

                                                 
7)

 We call it so to mention that it was written down by Pingala around 200 BC. In Europe this 

formula was derived by G.W.Leibniz in Dissertatio de arte combinatoria (1666). 
8)

 In Europe this triangle appeared for the first time in Traité du triangle arithmétique written 

by Blaise Pascal in 1654 (edited posthumously in 1665). Its name, the Pascal triangle, was 

proposed by Montmort (Essay d'analysis sur les jeux de hazard, 1708), and it was accepted 

in most European countries (but in Italy it is referred to as Tartaglia triangle). In India it was 

composed by Halayudha (as the visualization, called Meru prastara, of Pingala recurrence). 

It seems that in Persia and China the binomial theorem was discovered around 1100, in 

China the Pascal triangle is known as Yang Hui’s triangle after the author of the work 

Jiuzhang suan fa zuan lei (Reclassification of the mathematical procedures in nine chapters, 

c.1275), where he presents first seven rows of Pascal triangle (and informs that it is copied 

form Jia Xian’s Huangdi jiuzhang suanfa (Yellow Emperor’s nine chapters on mathematical 

methods, c.1050). 
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Now  

the line no.0 (i.e., the left side of the triangle) is formed from 1s only,  

the 1st line lists all naturals,  

consecutive elements in the 2nd line are triangular numbers.  

A deeper insight into Pascal triangle reveals many interesting dependencies. As 

an example notice that by putting  

n = C4,1 = 4 points on a circle we can join them to form C4,2 = 6 segments (4 

sides and 2 diagonals), C4,3 = 4 triangles and C4,4 = 1 

quadrilateral (which is a square if our 4 points are distributed 

equidistantly), 

n = C5,1 = 5 points on a circle we can join them to form C5,2 = 10 segments 

(5 sides and 5 diagonals), C5,3 = 10 triangles, C5,4 = 4 

quadrilaterals and C5,5 = 1 pentagon. 

 

 
Fig.1. Pascal triangle (more precisely: its 17 top rows) built of hexagons,  

which are colored blue if contain odd binomial coefficients, and white otherwise 

http://malsmath.blogspot.com/2006/12/pascals-triangle-and-prime-numbers.html 
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Pascal triangle can be presented via appropriately arranged isosceles elementary 

triangles, in every triangle there is sitting a binomial coefficient, or (see Fig.1.) 

as an infinite triangle composed of an infinite honeycomb, in every hexagon 

there is sitting a binomial coefficient. When we replace every odd number by the 

same color (i.e., when we color all numbers which are divisible by 2) and we 

white every hexagon where there is an even coefficient Cn,k, we find a structure 

similar to Sierpiński triangle, aka Sierpiński gasket (created by Wacław 

Sierpiński and desribed in the paper Sur une courbe dont tout point est un point 

de ramification, 1915, which was also published in Polish: O krzywej, której 

każdy punkt jest punktem rozgałęzienia 1916), although this pattern appeared in 

13th century mosaic in the cathedral of Agnani (in the province Latium) and in 

Rome, in the Basilica di Santa Maria in Cosmedin, aka S.Maria de Schola 

Graeca. This is a self-similar structure, a fractal set. Maybe the most known 

such set is the Mandelbrot set, its name recall Benoit Mandelbrot who 

investigated it in 1980. It was Mandelbrot who advocated to use the name 

‘Sierpiński triangle’ 
 

Recall that the binomial coefficients satisfy the Pingala recurrence,  

Cn,k = Cn–1,k–1 + Cn–1,k, 

with boundary values Cn,0 = Cn,0 = 1. Both the Pingala recurrence and boundary 

conditions are also satisfied by numbers called as combinatorial symbols: 

a (n, k)-th combinatorial symbol is denoted (after Andreas von Ettinghausen’s 

proposal presented in 1826) as  

!)(!

!
:

knk

n

k

n

−⋅
=








 

(and it can be read ‘n over k’). 

Another way in which binomial coefficients can be arranged is presented in 

Table 3. Here we have an infinite array, its left column (said to be the column 

no.0) and upper row are filled with numbers Cn,0 = 1 and Cn,n = 1, resp., and the 

numbers Cn,0, Cn,1, Cn,2, …, Cn,n are listed along the diagonals joining values Cn,0 

and Cn,n. The table of numbers Cn,2 arranged in this way can be called 

a binomial rectangle, or a Pascal rectangle.  

It has a direct interpretation which is easily illustrated on two orthogonal 

families: one containing street and the other containing avenues, just as a little 

idealized Manhattan transport network, where there are streets and avenues, 

street runs latitudinally (east-west direction) 
9)

, while avenues run longitudinally 

(south-north direction), so cross streets perpendicularly. Staying at the corner of 
                                                 
9)

 to be precise: in Manhattan the most of streets and avenues cross perpendicularly (and 

Broadway, probably the most famous Manhattan street, in its southern part, close to Central 

Park, does not observe this perpendicularity), the directions are not exactly east-west and 

south-north, they are rotated by about 30°     
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an avenue and a street, we can ask how many shortest pathways are to reach 

another corner. Let’s say that we are on the corner where the avenue no.0 meets 

the street no.0, and we aim to pass to the corner of the avenue no.4 and the street 

no.2. The shortest pathway is only if we move downwards and/or to the east. To 

arrive to the intersection of 4th avenue and 2nd street we have to move only The 

number of pathways is exactly C4+2,2 = 15. 

 

 

Table.3. Rectangular arrangement of binomial coefficients.  

There is distinguished 6th diagonal (n-th diagonal is the line joining cells described as 

n: and :n ; the index n runs 0, 1, 2, 3, …).  

Along n-th diagonal there are placed coefficients Cn–k,k (with k running from 0 up to n).  

For example, C6,1 = 15 stays on the 6th diagonal (it joins 6: and :6) and in the column 

no.2 (it is marked as :2, because columns are counted from 0) 
           

Cn,k  :0 :1 :2 :3 :4 :5 :6 :7 : … 

  1 1 1 1 1 1 1 1 1 … 

 0: 1 2 3 4 5 6 7 8 9 … 

1: 1 3 6 10 15 21 28 36 45 … 

2: 1 4 10 20 35 56 84 120 165 … 

3: 1 5 15 35 70 126 210 330 495 … 

4: 1 6 21 56 126 252 462 792 1287 … 

5: 1 7 28 84 210 462 924 1716 3003 … 

6: 1 8 36 120 330 792 1716 3432 6435 … 

7: 1 9 45 165 495 1287 3003 6435 12870 … 

8: 1 10 55 220 715 2002 5005 11440 24310 … 

9: 1 11 66 286 1001 3003 8008 19448 43758 … 

10: 1 12 78 364 1365 4368 12376 31824 75582 … 

11: 1 13 91 455 1820 6188 18564 50388 125970 … 
… : … … … … … … … … … … 
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Newton coefficients 

Let’s finish with the information that the binomial theorem written with 

(a, b) = (1, x) and with the use of combinatorial symbols reads 

(1 + x)
n
 = ∑

=
⋅







n

k

kx
k

n

0

. 

It says that binomial coefficients are coefficients in the representation of the 

function x → (1 + x)
n
  in the Stevin basis (recall: Stevin basis is the system of 

functions x → x
k
, where the exponent k assumes nonnegative integer values). 

This is equivalent to the statement that binomial coefficients are coefficients in 

the Maclaurin expansion of the function x → (1 + x)
n

 . 

Probably in 1665, while sojouring in Woolsthorpe, Isaac Newton, highly 

influenced by calculations performed by John Wallis 
10 ), realized that the 

binomial theorem writes down almost identically when instead of n there sits a 

real number r, i.e., he produced Maclaurin series and wrote (the equality which 

will be later on referred to as a Newtonian expansion)   

(1 + x)
r
 = ∑

∞

=
⋅









0k

kx
k

r
, 

where 
1

1

2

2
...

2

2

1

1
:

1

0

+−
⋅

+−
⋅⋅

−
−

⋅
−
−

⋅=
−
−

=







∏
−

=

krkr

k

r

k

r

k

r

jk

jr

k

r k

j

, 

e.g.  














3
4

7

 = 
123

2
4

7
1

4

7

4

7

⋅⋅








 −⋅






 −⋅
 = 

128

7−
,  















4
5

7

 = 
1234

3
5

7
2

5

7
1

5

7

5

7

⋅⋅⋅








 −⋅






 −⋅






 −⋅
 = 

625

14
. 

                                                 
10)

 John Wallis (1616-1703) was made famous by his Treatise on the conic sections (1655), 

Arithmetica infinitorum (1656) and Opera Mathematica (1695). In the first book he 

presented analytical definitions of conics (and popularized the use of symbol ∞), in the next 

he generalized facts observed by Archimedes, by Ibn al-Haytham (aka Alhazen) reported in 

his 7-volume Kitab al-manazir (Book of optics, c.1000 AD) and by Bonaventura Cavalieri 

(discussed in Geometria indivisibilibus continuorum nova quadam ratione promota, 1635) 

and gave the formula which in today symbolism is 
1

11

0 +
=∫

m

m dxx  with m ≠ –1. Starting 

with the sequence 1)1(
1

0

02 =−∫ dxx , 
3

212
1

0
)1( =−∫ dxx , 

15

822
1

0
)1( =−∫ dxx , … and 

applying the interpolation he found that 
...7755331

....8664422

2

π

⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅

= , which is now known as 

a Wallis product. 
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The Newtonian expansion was produced by Newton 
11 )

 and this fact is 

remembered in another name given to coefficients Cn,k – they are aka Newton 

coefficients.  Newton himself did not occupy with the convergence of the series 

generated by the function  

x → (1 + x)
r
 . 

The convergence was discussed by Euler and Gauss, and (for a complex 

argument x) by Abel who ultimately stated that it holds if | x | < 1. 

 

Plato is my friend, Aristotle is my friend, but my best friend is truth." --Head of Newton's 

Quaestiones Quaedam Philosophicae (Certain Philosophical Questions), ca. 1664. 

                                                 
11)

 Newton found this expansion when  staying in family’s country manor in Woolstrophe, in 

1665 (so only 2 years after he started to be interested in mathematics he started to learn in 

Cambridge). In the same time he presented the expansion for  

...
4

3

3

2

2
)( // +

−
++

−
+

−
++=+ DQ

n

nm
CQ

n

nm
BQ

n

nm
AQ

n

m
PPQP nmnm

,  

where each of A, B, C, D, … represents the previous term, so that  

...
123

21

12

1

1)1( 32/ +
⋅⋅








 −⋅






 −⋅
+

⋅








 −⋅
++=+ Q

n

m

n

m

n

m

Q
n

m

n

m

Q
n

m
Q nm
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Newtonian, falling and rising powers 

Considered as functions of r, the binomial coefficients ∏
= −

−
=







 k

j jk

jr

k

r

0

 define the 

function called a k-th Newtonian power of r. Replacing r by x (in fact, x is the 

standard letter used to denote the argument of the function) we have 

∏
= −

−
=







 k

j jk

jx

k

x

0

 = 

∏

∏

=

=

−

−

k

j

k

j

jk

jx

0

0

)(

)(

. 

In the last quotient the denominator does not depend on x, while the nominator 

is the polynomial, of degree k+1 in variable x. This polynomial is the product of 

factors x–j and each next factor is smaller by 1 than the previous one (equal to x); 

we can tell that in consecutive factors x falls down by 1. The polynomial defined 

in this way is called a falling power; more precisely, for any natural n a n-th 

falling power of x, or a n-th falling factorial power, or a falling power of 

degree n, or a descending power, is the polynomial in x defined by the formula  

∏ −
= −= 1

0
)(: n

j
n jxx  

(read: ‘x to the n falling’); additionally, a falling power of degree 0 is set to be 1, 

1:0 =x . 

Analogously, for any natural n a n-th rising power of x, or a n-th raising 

factorial power, or a rising power of degree n, or an ascending power, is the 

polynomial in x defined by the formula  

∏ = += n
j

n jxx
0

)(:  

(read: ‘x to the n rising’); additionally, a rising power of degree 0 is set to be 1, 

1:0 =x . 

n-th rising power is aka a Pochhammer symbol 
12)

 and denoted by (x)n.  

 

                                                 
12)

 Leo August Pochhammer (1841-1920) famous for his works on vibrations of circular 

cylinders and bending of beams, as well as for the introduction, in 1870, of generalized 

hypergeometric functions, intensively used rising powers (x)n. The term ‘Pochhammer 

symbol’ was proposed by P.E.Appell. Rising powers were first considered by A.L.Crelle 

in 1831.  
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With K denoting a field (in practice, K is the set Q of rational numbers, the set R 

of reals, or the set C of complex numbers), Kn[x] denotes the space completed by 

polynomials whose coefficients are taken from K and have degree up to n. Later 

on we deal with K = R, so we have the space Rn[x] of real polynomials in x of 

degree up to n. This is a (n+1)-dimensional linear space, so every its element is 

uniquely represented, via the sequence of n+1 real numbers, in arbitrary basis of 

the space Rn[x]. Exemplary bases are: 

a) a standard basis, aka a natural basis or a Stevin basis;  

it is composed of natural powers: 1, x, x
2
, …, x

 n
; 

b) a Newtonian basis; its elements are: 







0

x
 = 1, 








1

x
 = x, 








2

x
, …, 








n

x
; 

c) a descending power basis, aka a falling power basis;  

its elements are 0x  = 1, 1x  = x, …, nx  = x
 . 
(x–1)

 . 
…

 . 
(x–n+1); 

d) an ascending power basis, aka a rising power basis or a Pochhammer 

basis; it consists of 0x  = 1, 1x  = x, …., nx  = x
 . 
(x+1)

 . 
…

 . 
(x+n–1). 

It is easy to notice that falling and rising powers are related to Newtonian 

powers via the equalities  








 −+
⋅=

n

nx
nxn 1

! ,   







⋅=

n

x
nxn ! , 

and the binomial theorem fully conserves its form when written with the use of 

falling powers and of rising powers, 

∑
=

− ⋅⋅







=+

n

j

jjnn ba
j

n
ba

0

)( ,   ∑
=

−
⋅⋅








=+

n

j

jjnn ba
j

n
ba

0

)( . 

Both above relations, with a and b replaced by 1 and x, resp., are representations  

     of the 1+x to the n falling in the falling power basis  

and of the 1+x to the n rising in the rising power basis, 

namely          ∑
=

⋅







=+

n

j

jn x
j

n
x

0

)1( ,    ∑
=

⋅







=+

n

j

jn x
j

n
x

0

)1( , 

and it exhibits that binomial coefficients are coefficients of these representations. 

In the next we recognize the coefficients of rising powers in Stevin basis and, 

inversely, the coefficients of standard powers in the rising power basis.  
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Stirling numbers 

 

Coefficients in the representation of the n-th rising power in the Stevin basis are 

denoted by sn,k, or by 







k

n
, and are called Stirling numbers of the first kind 

13)
. 

Thus 

∑
=

⋅=
n

k

k
kn

n xsx
0

,  = ∑
=

⋅






n

k

kx
k

n

0

 

and, for instance, with n = 5 we have  

∑
=

⋅=
6

0
,6

6

k

k
k xsx , 

or   

x
 . 
(x+1)

 . 
(x+2)

 . 
(x+3)

 . 
(x+4)

 . 
(x+5) = x

6
 + 15x

5
 + 85x

4
 + 225x

3
 + 274x

2
 + 120x,  

so 

s6,0 = 0, s6,1 = 120,  s6,2 = 274,  s6,3 = 225,  s6,4 = 85,  s6,5 = 15,  s6,6 = 1, 

 

Coeffcicients in the representation of the n-th falling power in the Stevin basis 

are denoted by Sn,k or by 








k

n
, and are called Stirling numbers of the second 

kind. Thus 

x
 n
 = ∑

=
⋅

n

k

k
kn xs

0
,  = ∑

=
⋅







n

k

kx
k

n

0

 

and, for instance, with n = 4 we have  

x
 4
 = s4,0

 . 
1 + s4,1

 . 
x + s4,2

 . 
x

 . 
(x–1) + s4,3

 . 
x

 . 
(x–1)

 . 
(x–2) + s4,4

 . 
x

 . 
(x–1)

 . 
(x–2)

 . 
(x–3) 

and for x = 0, 1, 2, 3 and 4 it gives 

0
 4
 = s4,0

 . 
1, 

1
 4
 = s4,0

 . 
1 + s4,1

 . 
1, 

2
 4
 = s4,0

 . 
1 + s4,1

 . 
2 + s4,2

 . 
2

 . 
1, 

3
 4
 = s4,0

 . 
1 + s4,1

 . 
3 + s4,2

 . 
3

 . 
2 + s4,3

 . 
3

 . 
2

 . 
1, 

4
 4
 = s4,0

 . 
1 + s4,1

 . 
4 + s4,2

 . 
4

 . 
3 + s4,3

 . 
4

 . 
3

 . 
2 + s4,4

 . 
4

 . 
3

 . 
2

 .
 1. 

                                                 
13)

 James Stirling presented these numbers, as well as that now called Stirling numbers of the 

second kind (and later on in this chapter denoted as Sn,k), in his treatise Methodus 

differentialis (1749), which we mentioned of when talking about the approximation of n !. 

Before Stirling these numbers appeared, a.o., in Thomas Harriot manuscript dated about 

1600. The name ‘Stirling numbers’ was coined by Niels Nielsen in his paper Recherches 

sur les polynomes et les nombres de Stirling (1904) nad disseminated by his Handbuch 

der Theorie der Gammafunktion (1906) 
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This system of 5 equations is solved by  

s4,0 = 0, s4,1 = 1, s4,2 = 7, s4,3 = 6, s4,4 = 1. 

From the definitions of Stirling numbers of the first kind, sn,k, and that of the 

second kind, Sn,k, it follows that they satisfy, for every natural n and with 

k ∈ {1, 2, …, n–1}, following recursive relations: 

 sn,k =  sn–1,k–1 + (n–1)
 . 
sn–1,k,   

 Sn,k =  Sn–1,k–1 +      k
 . 
Sn–1,k,   

with (so-called boundary values)  

sn,0 = Sn,0 = δn,0,  sn,n = Sn,n = 1 

valid for n ∈ N0.   

Both recurrences are similar to the recursion  

bn,k =  bn–1,k–1 + bn–1,k  

which, with bn,0 = bn,n = 1, holds true for binomial coefficients, bn,k = 







k

n
.  

Similarly, Stirling numbers sn,k and Sn,k can be arranged in triangles. These 

triangles are presented in Table 2 and Table 3 in the next page. 

There are numerous formulas which are analogous to the above three ones and 

define families of numbers. For example, the family of numbers An,k is defined 

by relations  

An,0 = An,n = 1 for  n = 0, 1, 2, …, 

An,k = (n–k)
 . 
An–1,k–1 + (k+1)

 . 
An–1,k  for k = 1, 2, …, n–1. 

Numbers An,k are called Euler ascent numbers, we will discuss them later on. 
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Table 2. Triangle listing Stirling numbers of the first kind, sn,k for n = 0, 1, 2, 3, 4, 5, 6  

        0  1  2  3 

n=0:       1        

n=1:      0  1       

n=2:     0  1  1      

n=3:    0  2  3  1     

n=4:   0  6  11  6  1    

n=5:  0  24  50  35  10  1   

n=6: 0  120  274  225  85  15  1  

…  …  …  …  …  …  …  … 

for instance, s5,2 = s4,1 + 4
 . 
s4,2 = 

      = 3! + 4
 . 
(s3,1 + 3

 . 
s3,2) =  

      = 6 + 4
 . 
(2! + 3

 . 
(s2,1 + 2

 . 
s1,1)) = 

      = 6 + 4
 . 
(2 + 3

 . 
(1! + 2

 . 
1)) = 50. 

 

Table 2. Triangle listing Stirling numbers of the second kind, Sn,k for n = 0, 1, 2, 3, 4, 5, 6 

        0  1  2  3 

n=0:       1        

n=1:      0  1       

n=2:     0  1  1      

n=3:    0  1  3  1     

n=4:   0  1  7  6  1    

n=5:  0  1  15  25  10  1   

n=6: 0  1  31  90  65  15  1  

…  …  …  …  …  …  …  … 

for instance, S5,2 = S4,1 + 2
 . 
S4,2 = 

= 1 + 2
 . 
(S3,1 + 2

 . 
S3,2) =  

= 1 + 2
 . 
(1 + 2

 . 
(S2,1 + 2

 . 
S1,1)) = 

= 1 + 2
 . 
(1 + 2

 . 
(1 + 2

 . 
1)) = 15. 

 

 
 


